Range sensor plugins for Gazebo using the sensor simulation library rmagine. With rmagine’s OptiX backend it is possible to simulate depth sensor data directly on your RTX graphics card. With Embree backend you can simulate any provided sensor online on your CPU. Embree and OptiX are libraries for raytracing and build BVH acceleration structures on the scene for faster ray traversals. After building these acceleration structures, you can simulate depth sensors on CPU or GPU without getting perfomance issues even in large Gazebo worlds.
Youtube-Video:
After compiling
example.launch
user@pc:~$ roslaunch rmagine_gazebo_plugins example.launch
Simulates a 3d lidar at 20hz on Embree backend.
To use OptiX backend, run
user@pc:~$ roslaunch rmagine_gazebo_plugins example.launch rmagine:=optix
Open RViz set fixed frame to base_footprint
and visualize topic laser3d/pcl
.
rotating_scanner.launch
user@pc:~$ roslaunch rmagine_gazebo_plugins rotating_laser.launch
or with OptiX backend
user@pc:~$ roslaunch rmagine_gazebo_plugins rotating_laser.launch rmagine:=optix
Open RViz set fixed frame to base_footprint
and visualize topic laser2d/scan
.
In Gazebo-GUI find the laser2d
link at model robot_sensor
.
To let the scanner rotate go to Gazebo-GUI:
laser2d
link at model robot_sensor
Now the scanner cylinder should rotate in Gazebo as well as in RViz.
Follow instructions of Rmagine library installation. Compile with Embree or OptiX backends for CPU or GPU support respectively.
Clone this repository to your ROS-workspace (src folder).
user@pc:~/catkin_ws/src$ git clone [this-repo-link]
Then compile with
user@pc:~/catkin_ws$ catkin_make
Depending on which backends were installed during Rmagine installation the following plugins are built:
rmagine_embree_map_gzplugin
rmagine_embree_spherical
rmagine_optix_map_gzplugin
rmagine_optix_spherical
The rmagine sensors are implemented as new gazebo sensors. They need to be registered first. To do that, you need to add librmagine_embree_sensors_gzregister.so
or librmagine_optix_sensors_gzregister.so
to the arguments of the gazebo execution call.
Embree Example
user@pc:~$ gazebo -s librmagine_embree_sensors_gzregister.so
<node name="gazebo" pkg="gazebo_ros" type="gzserver"
args="-s librmagine_embree_sensors_gzregister.so ...">
...
</node>
Embree sensor plugins require one Embree map plugin running. OptiX sensor plugins require one OptiX map plugin running. In world-files the map plugins can be enabled as follows:
<world>
...
<!-- Embree Map Plugin -->
<plugin name='rmagine_embree_map' filename='librmagine_embree_map_gzplugin.so'>
</plugin>
<!-- Optix Map Plugin -->
<plugin name='rmagine_optix_map' filename='librmagine_optix_map_gzplugin.so'>
</plugin>
</world>
The map plugins construct a acceleration structure over the Gazebo scene. As soon as the gazebo scene changes, the acceleration structure is updated accordingly. Some other examples are located in the worlds folder.
To increase the performance sdf entities can be marked to be ignored by the map plugins. For example, if you know that your 3D lidar never scans the robot it is attached to, you may consider excluding the entire robot of the map plugins.
To achieve that in world-files just add an rmagine_ignore
tag to the model:
<world>
<!-- Exclude single model from map -->
<model name='plane1_model'>
<rmagine_ignore/>
...
</model>
<!-- Or exclude single link from map -->
<model name="plane2_model">
...
<link name="plane2_link">
...
<rmagine_ignore/>
</link>
</model>
</world>
How to add ignores in urdf-files will be explained in the next section.
2D Laser
<gazebo reference="laser2d">
<sensor type="rmagine_embree_spherical" name="laser2d">
<pose>0 0 0 0 0 0</pose>
<always_on>true</always_on>
<update_rate>60</update_rate>
<ray>
<scan>
<horizontal>
<min_angle>${-M_PI}</min_angle>
<increment>${1.0 * M_PI / 180.0}</increment>
<samples>360</samples>
</horizontal>
</scan>
<range>
<min>0.0</min>
<max>10.0</max>
</range>
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.01</stddev>
</noise>
</ray>
</sensor>
</gazebo>
3D Laser
<gazebo reference="laser3d">
<sensor type="rmagine_embree_spherical" name="laser3d">
<pose>0 0 0 0 0 0</pose>
<always_on>true</always_on>
<update_rate>60</update_rate>
<ray>
<scan>
<horizontal>
<min_angle>${-M_PI}</min_angle>
<increment>${1.0 * M_PI / 180.0}</increment>
<samples>360</samples>
</horizontal>
<vertical>
<min_angle>${-60.0 * M_PI / 180.0}</min_angle>
<increment>${1.0 * M_PI / 180.0}</increment>
<samples>120</samples>
</vertical>
</scan>
<range>
<min>0.0</min>
<max>80.0</max>
</range>
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.01</stddev>
</noise>
</ray>
</sensor>
</gazebo>
As in world-files, ignores can be added to URDF files:
<robot>
...
<!-- Ignore the entire robote-->
<gazebo>
<rmagine_ignore/>
</gazebo>
<!-- Ignore a link. Useful if you want to ignore the scanner visual -->
<gazebo reference="my_scanner_link">
<rmagine_ignore/>
</gazebo>
</robot>
Currently noise models are implemented as preprocessing steps directly on the simulated ranges data. Any of the following noise models can be chained to generate complex combined noise models.
Apply gaussian noise $N(\mu, \sigma)$ to simulated ranges.
Parameter | Description |
---|---|
mean |
Mean $\mu$ of normal distributed noise |
stddev |
standard deviation $\sigma$ of normal distributed noise |
Example:
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.01</stddev>
</noise>
Apply gaussian noise $N(\mu, \sigma_r)$ to simulated ranges. Here, the standard deviation varies depending on distance.
Parameter | Description |
---|---|
mean |
Mean $\mu$ of normal distributed noise |
stddev |
standard deviation $\sigma$ of normal distributed noise |
range_exp |
range exponent $c$ to compute range based stddev: $ \sigma_r = \sigma \cdot r^{c} $ |
Example:
<noise>
<type>rel_gaussian</type>
<mean>0.0</mean>
<stddev>0.002</stddev>
<range_exp>1.0</range_exp>
</noise>
Apply uniform dust noise to simulated ranges. Assuming some small particles could be hit by the range sensor that are not modeled by the scene, use this noise type.
Parameters:
Parameter | Description |
---|---|
hit_prob |
Probability of a ray hitting a particle in one meter free space. |
return_prob |
Probability of a ray hitting dust returns to sender depending on particle distance |
Example:
<noise>
<type>uniform_dust</type>
<hit_prob>0.0000001</hit_prob>
<return_prob>0.5</return_prob>
</noise>
Noise Chaining
Example of using the gaussian model first and the uniform dust model second:
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.002</stddev>
</noise>
<noise>
<type>uniform_dust</type>
<hit_prob>0.0000001</hit_prob>
<return_prob>0.5</return_prob>
</noise>
This plugin generates ROS-messages of the simulated data and writes them to specified ROS-topics. The following ROS-Adapter are available dependend on your sensor type:
librmagine_optix_ros_gzplugin.so
rmagine_optix_spherical
librmagine_embree_ros_gzplugin.so
rmagine_embree_spherical
Supported output
messages are:
sensor_msgs/LaserScan
sensor_msgs/PointCloud
sensor_msgs/PointCloud2
Examples - this time using OptiX.
2D Laser
<gazebo reference="laser2d">
<sensor type="rmagine_optix_spherical" name="laser2d">
<pose>0 0 0 0 0 0</pose>
<always_on>true</always_on>
<update_rate>60</update_rate>
<ray>
<scan>
<horizontal>
<min_angle>${-M_PI}</min_angle>
<increment>${1.0 * M_PI / 180.0}</increment>
<samples>360</samples>
</horizontal>
</scan>
<range>
<min>0.0</min>
<max>10.0</max>
</range>
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.01</stddev>
</noise>
</ray>
<plugin name="rmagine_ros_laser2d" filename="librmagine_optix_ros_gzplugin.so">
<frame>laser2d</frame>
<outputs>
<output name="scan">
<msg>sensor_msgs/LaserScan</msg>
<topic>laser2d/scan</topic>
</output>
<output name="pcl">
<msg>sensor_msgs/PointCloud</msg>
<topic>laser2d/pcl</topic>
</output>
</outputs>
</plugin>
</sensor>
</gazebo>
3D Laser
<gazebo reference="laser3d">
<sensor type="rmagine_optix_spherical" name="laser3d">
<pose>0 0 0 0 0 0</pose>
<always_on>true</always_on>
<update_rate>60</update_rate>
<ray>
<scan>
<horizontal>
<min_angle>${-M_PI}</min_angle>
<increment>${1.0 * M_PI / 180.0}</increment>
<samples>360</samples>
</horizontal>
<vertical>
<min_angle>${-60.0 * M_PI / 180.0}</min_angle>
<increment>${1.0 * M_PI / 180.0}</increment>
<samples>120</samples>
</vertical>
</scan>
<range>
<min>0.0</min>
<max>80.0</max>
</range>
<noise>
<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.01</stddev>
</noise>
</ray>
<plugin name="rmagine_ros_laser3d" filename="librmagine_optix_ros_gzplugin.so">
<frame>laser3d</frame>
<outputs>
<output name="pcl">
<msg>sensor_msgs/PointCloud</msg>
<topic>laser3d/pcl</topic>
</output>
<output name="pcl2">
<msg>sensor_msgs/PointCloud2</msg>
<topic>laser3d/pcl2</topic>
</output>
</outputs>
</plugin>
</sensor>
</gazebo>
This is a pre-release. There is still some work to do for the first stable release:
Nice-to-Have:
Known Issues:
[Dbg] [rmagine_embree_map_gzplugin.cpp:52] [RmagineEmbreeMap] Destroyed.
terminate called after throwing an instance of 'boost::wrapexcept<boost::lock_error>'
terminate called recursively
what(): boost: mutex lock failed in pthread_mutex_lock: Invalid argument
Aborted (core dumped)
On my system, Gazebo finds all rmagine libraries automatically. If that is not the case for you, try appending your ROS workspace your_ws
to the Gazebo search pathes:
export GAZEBO_PLUGIN_PATH=~/your_ws/devel/lib:$GAZEBO_PLUGIN_PATH